Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

Educational Objectives

- Evaluate the current evidence across multiple lines of therapy and appropriately sequence therapies for gastric and gastroesophageal (GEJ) cancers
- Mitigate toxicities associated with gastric cancer treatment regimens to improve patient outcomes
- Evaluate the safety and efficacy data for emerging therapies for gastric and GEJ cancers.

Agenda

- Introduction
- Overview
 - Treatment in first-line setting
 - Treatment in second-line setting
 - Treatment in third-line setting
 - Role of approved biologics
 - Emerging therapies
 - Side effect management
- Questions and Answers

Worldwide Incidence

Gastric Cancer Statistics

Gastric Adenocarcinoma: Risk Factors

- Nutritional
 - Low fat or protein consumption
 - High consumption of salted, smoked, or preserved foods
 - High nitrate consumption
 - Low consumption of fruits, vegetables
- Medical
 - Previous gastric surgery
 - Helicobacter pylori infection (2x)
 - Chronic atrophic gastritis
- Environmental
 - P. Helicobacter pylori infection (2x)
 - Poor food preparation (smoked)
 - Lack of refrigeration
 - Poor drinking water (eg, well water)
 - Occupation (eg, rubber, coal workers)
 - Cigarette smoking (1.6x)
- Hereditary Factors
 - Germline CDH1 mutation
 - Impaired function in Mismatch repair genes (MLH1)
 - Inactivating mutations in BRCA gene

National Cancer Institute: Gastric Cancer Treatment PDQ.

©2018 Rockpointe Oncology
Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

STAGING: AJCC TNM Classification for Gastric Cancer

<table>
<thead>
<tr>
<th>Stage</th>
<th>Tumor</th>
<th>Node</th>
<th>Metastasis</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>T1-2</td>
<td>N0-1</td>
<td>M0</td>
<td>Primary tumor, no secondary tumor, no metastasis</td>
</tr>
<tr>
<td>B</td>
<td>T3-4</td>
<td>N0-1</td>
<td>M0</td>
<td>Primary tumor, secondary tumor, no metastasis</td>
</tr>
<tr>
<td>C</td>
<td>T1-2</td>
<td>N2-3</td>
<td>M0</td>
<td>Primary tumor, secondary tumor, metastasis</td>
</tr>
<tr>
<td>D</td>
<td>T1-2</td>
<td>N0</td>
<td>M1</td>
<td>Primary tumor, no secondary tumor, metastasis</td>
</tr>
<tr>
<td>D</td>
<td>T3-4</td>
<td>N0</td>
<td>M1</td>
<td>Primary tumor, secondary tumor, metastasis</td>
</tr>
<tr>
<td>D</td>
<td>T1-2</td>
<td>N1</td>
<td>M1</td>
<td>Primary tumor, secondary tumor, metastasis</td>
</tr>
<tr>
<td>D</td>
<td>T3-4</td>
<td>N2-3</td>
<td>M1</td>
<td>Primary tumor, secondary tumor, metastasis</td>
</tr>
</tbody>
</table>

Histological Classification

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuse</td>
<td>Tumor cells with pleomorphic nuclei</td>
</tr>
<tr>
<td>Intestinal</td>
<td>Tumor cells with well-differentiated nuclei</td>
</tr>
</tbody>
</table>

Molecular Subtypes

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Genetically stable</th>
<th>(M_0)</th>
<th>(M_0)</th>
<th>(M_1)</th>
<th>(M_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM</td>
<td>(\text{high})</td>
<td>(\text{low})</td>
<td>(\text{low})</td>
<td>(\text{low})</td>
<td>(\text{high})</td>
</tr>
</tbody>
</table>

The Role of Chemotherapy in Advanced Gastric Cancer

- Survival with best supportive care (BSC) alone ~ 3 months
- Chemotherapy affords survival in metastatic gastric cancer
- Benefit in weighted mean survival ~ 6 months

Multidisciplinary Care of Gastric and Locally Advanced GEJ Cancer
Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

Role of Surgery in Treatment of Gastric Cancer

Surgical Treatment of Locally Advanced Esophageal Cancer

First-Line Chemotherapy

Phase III Trials Supporting Standard Practice in Advanced Gastric Cancer

REAL 2: Study Design

REAL-2 Results

©2018 Rockpointe Oncology
Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

ECF vs EOX

<table>
<thead>
<tr>
<th>Arm</th>
<th>OS (m)</th>
<th>1 year survival</th>
<th>p-value</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECF</td>
<td>9.9</td>
<td>37.7 (31.8-31.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOX</td>
<td>11.2</td>
<td>46.8 (40.4-52.9)</td>
<td>0.020</td>
<td>0.80 (0.66-0.97)</td>
</tr>
</tbody>
</table>

Cunningham et al. NEJM 2008

Phase III Trial in Metastatic Gastroesophageal Adenocarcinoma with Fluorouracil, Leucovorin Plus Either Oxaliplatin or Cisplatin

V-325 Study Design

Kaplan-Meier estimates of (A) time to progression and (B) overall survival among chemotherapy-naïve advanced gastric cancer patients treated with docetaxel, cisplatin, and fluorouracil (DCF) or cisplatin and fluorouracil (CF; full analysis population).

Eric Van Cutsem; Vladimir M. Moiseyenko; Sergei Tjulandin; Alejandro Majlis; Manuel Constenla; Corrado Boni; Adriano Rodrigues; Miguel Fodor; Yee Chao; Edouard Voznyi; Marie-Laure Risse; Jaffer A. Ajani; JCO 2006, 24, 4991-4997. DOI: 10.1200/JCO.2006.06.8429 Copyright © 2006 TAX 325 Study Results

ECF vs FOLFIRI

Time-to-treatment failure (TTF) according to treatment arm (Kaplan-Meier estimation). EOX arm: epirubicin, cisplatin, and capecitabine as the first-line treatment; FOLFIRI arm: irinotecan, leucovorin, fluorouracil bolus, and continuous infusion as the first-line treatment. HR, hazard ratio.

Rosine Guimbaud; Christophe Louvet; Pauline Ries; Marc Ychou; Emilie Maillard; Thierry André; Jean-Marc Gornet; Thomas Aparicio; Suzanne Nguyen; Ahmed Azzedine; Pierre-Luc Etienne; Eveline Boucher; Christine Rebischung; Pascal Hammel; Philippe Rougier; Laurent Bedenne; Olivier Bouché; JCO 2014, 32, 3520-3526. DOI: 10.1200/JCO.2013.54.1011

Treatment of Metastatic Disease (1st Line)

<table>
<thead>
<tr>
<th>OX / ECO / EDP</th>
<th>Cape / ECO / EOX</th>
<th>XP</th>
<th>FLO</th>
<th>FOLFR</th>
<th>5-FU / Ca</th>
<th>DCF</th>
<th>ECP</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Pts</td>
<td>498</td>
<td>513</td>
<td>160</td>
<td>103</td>
<td>170</td>
<td>335</td>
<td>221</td>
</tr>
<tr>
<td>1RRR</td>
<td>44%</td>
<td>49%</td>
<td>41%</td>
<td>34%</td>
<td>32%</td>
<td>54%</td>
<td>36%</td>
</tr>
<tr>
<td>TTF, months</td>
<td>0.7</td>
<td>6.5</td>
<td>5.6</td>
<td>5.5</td>
<td>5.0</td>
<td>6.0</td>
<td>5.6</td>
</tr>
<tr>
<td>OS, months</td>
<td>10.9</td>
<td>10.4</td>
<td>10.5</td>
<td>10.7</td>
<td>9.0</td>
<td>13.0</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

Trastuzumab + Chemotherapy in Advanced HER2+ Gastric Cancer: ToGA

Primary endpoint: OS

- Patients with advanced gastric cancer screened for HER2 status (n = 810; 22% of successful screenings)
- Trastuzumab + Chemotherapy in Advanced HER2+ Gastric Cancer: ToGA
 - Primary endpoint: OS
 - Selected at investigator’s discretion: 5-FU 800 mg/m2/day infusional on Days 1-5 q3w x 6; capecitabine 1000 mg/m2 BID on Days 1-14 q3w x 6.

Key Points First Line Treatment

- Chemotherapy with platinum compound (cisplatin, oxaliplatin) plus a fluoropyrimidine (fluorouracil [5-FU], capecitabine, or S-1) is the global standard
- Selective patients can benefit from triplet combinations but increased side effects must be considered. Overtoxic treatments like docetaxel-containing triplet regimens cannot be recommended in older patients.
- Oxaliplatin and irinotecan can substitute for cisplatin without compromising the efficacy of chemotherapy
- Trastuzumab in combination with chemotherapy is the recommended treatment for patients with HER2+ tumors 3+ by IHC or 2+IHC + FISH positive.

Second Line Chemotherapy

- Phase III REGARD Trial
 - BSC ± Ramucirumab in Metastatic Gastric or GEJ Cancer
 - Primary objective: OS
 - Secondary endpoints: PFS, 12-wk PFS, ORR, DOR, QoL, safety

©2018 Rockpointe Oncology
REGARD Trial of BSC ± Ramucirumab in Metastatic Gastric or GEJ Cancer: OS

- **Pts at Risk, n**
 - Ramucirumab: 238
 - Placebo: 117

- **Proportion Remaining Alive**
 - **Mos**
 - Ramucirumab: 5.2 (4.4-5.7)
 - Placebo: 3.8 (2.8-4.7)
 - **6-mo OS, %**
 - Ramucirumab: 42
 - Placebo: 32
 - **12-mo OS, %**
 - Ramucirumab: 18
 - Placebo: 11
 - **HR: 0.776 (95% CI: 0.603-0.998; P = .0473)**

REGARD Trial of BSC ± Ramucirumab in Metastatic Gastric or GEJ Cancer: PFS

- **Pts at Risk, n**
 - Ramucirumab: 238
 - Placebo: 117

- **Proportion Without Progression**
 - **Mos**
 - Ramucirumab: 2.1 (1.5-2.7)
 - Placebo: 1.3 (1.3-1.4)
 - **12-wk PFS, %**
 - Ramucirumab: 40
 - Placebo: 16
 - **HR: 0.483 (95% CI: 0.376-0.620; P < .0001)**

RAINFOW Study

- **Ramucirumab 8 mg/kg day 1&15**
- **Paclitaxel 80 mg/m² day 1, 8 & 15 of a 28-day cycle**
- **N = 330**
- **Placebo day 1&15**
- **Paclitaxel 80 mg/m² day 1, 8 & 15**
- **N = 335**

Important inclusion criteria:
- Metastatic or loc. adv. unresectable gastric or GEJ* adenocarcinoma
- Progression after 1st line platinum/fluoropyrimidine-based chemotherapy

Stratification factors:
- Geographic region
- Measurable vs non-measurable disease
- Time to progression on 1st line therapy (< 6 mos vs. ≥ 6 mos)

*GEJ= gastroesophageal junction; gastric and GEJ will be summarized under the term GC

- **ΔmOS difference: 2.3 months**
- **RAM + PTX PBO + PTX**
 - **Patients / Events**
 - RAM + PTX: 330 / 256
 - PBO + PTX: 335 / 260
 - **Median (mos) (95% CI)**
 - RAM + PTX: 9.63 (8.48, 10.81)
 - PBO + PTX: 7.36 (6.31, 8.38)
 - **6-month OS**
 - RAM + PTX: 72%
 - PBO + PTX: 57%
 - **12-month OS**
 - RAM + PTX: 40%
 - PBO + PTX: 30%

- **RAM = ramucirumab; PTX = paclitaxel; PBO = placebo.**

The Role of Biologics

HER-2 Inhibition

<table>
<thead>
<tr>
<th>Trial</th>
<th>Line of Therapy</th>
<th>Drug</th>
<th>Patient Selection</th>
<th>Survival</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ToGA</td>
<td>1st Line</td>
<td>Trastuzumab + Cis + 5FU vs Cis + 5FU</td>
<td>HER2+</td>
<td>15.6 mos vs 11.1 mos</td>
<td>FDA approved in 2010</td>
</tr>
<tr>
<td>LOGIC</td>
<td>1st Line</td>
<td>Cis + Lapatinib vs Cis + Placebo</td>
<td>HER2+</td>
<td>12.2 mos vs 10.3 mos</td>
<td>No improvement in PFS or OS</td>
</tr>
<tr>
<td>ZAINZER</td>
<td>1st Line</td>
<td>Pertuzumab + Trastuzumab + chemo vs Trastuzumab + chemo</td>
<td>HER2+</td>
<td>17.5 mos vs 14.2 mos</td>
<td>NS</td>
</tr>
<tr>
<td>TYPHON</td>
<td>2nd/3rd Line</td>
<td>Lapatinib + Paclitaxel vs Paclitaxel alone</td>
<td>HER2+</td>
<td>11.3 mos vs 8.4 mos</td>
<td>Did not improve OS significantly</td>
</tr>
<tr>
<td>GATSBY</td>
<td>2nd/3rd Line</td>
<td>Trastuzumab + Lapatinib vs Trastuzumab alone</td>
<td>HER2+</td>
<td>7 months for T-DM1 vs 6.6 mos for capecitabine & capecitabine + docetaxel</td>
<td>No efficacy</td>
</tr>
</tbody>
</table>

2018 Rockpointe Oncology

©2018 Rockpointe Oncology

Activity Slides

©2018 Rockpointe Oncology
Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

EGFR Inhibition / EGFR Targeting
- Targeted Agents Phase III: Negative Trials for EGFr
- REAL 3: ECX + / - Panitumumab (U.K.): Negative: Panitumumab had inferior outcomes
- EXPAND: Cape-Cis + / - Cetuximab (E.U.) – Negative: Cetuximab trended inferior
- COG: BSC vs Gefitinib (U.K.): Negative
- Trials conducted with no biomarker
- Selection of patients
- No biomarker identified in EG Cancer

EGFR

Hepatocyte Growth Factor

<table>
<thead>
<tr>
<th>TRIAL</th>
<th>Drugs</th>
<th>Patient Selection</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rilotu-1</td>
<td>Rilotumumab + ECX vs ECX</td>
<td>MET+/HER2-</td>
<td>Closed due to toxicity</td>
</tr>
<tr>
<td>Rilotu-2</td>
<td>Rilotumumab + CA vs CA</td>
<td>MET+/HER2-</td>
<td>Closed due to toxicity</td>
</tr>
<tr>
<td>MET Gastric</td>
<td>Oratulimumab + FOLFIRI vs FOLFOX</td>
<td>MET+/HER2-</td>
<td>Effective</td>
</tr>
</tbody>
</table>

| Phase II | Sorafenib | Unselected | No improvement in PFS or OS |

Figure from Oncotarget, 2017, Vol 8 (No 34), pp: 57654-57669

VEGF/VEGFR Pathway

<table>
<thead>
<tr>
<th>Trial</th>
<th>Line of Therapy</th>
<th>Drugs</th>
<th>Patient Selection</th>
<th>Survival</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVA-1</td>
<td>1st Line</td>
<td>XP + Bevacizumab</td>
<td>No selection</td>
<td>12.1 mos vs 10.1 mos</td>
<td>1.2 mos to 1.0; P > 0.002</td>
</tr>
<tr>
<td>REGARD</td>
<td>2nd Line</td>
<td>Ramucirumab + BSC</td>
<td>No selection</td>
<td>5.3 mos vs 3.8 mos</td>
<td>p<0.047</td>
</tr>
<tr>
<td>RAINBOW</td>
<td>2nd Line</td>
<td>Pazopanib + Ram</td>
<td>No selection</td>
<td>9.6 mos vs 7.4 mos</td>
<td>hazard ratio 0.87; 95% CI 0.73 to 1.03; P = 0.052</td>
</tr>
<tr>
<td>Phase III</td>
<td>3rd Line</td>
<td>Apatinib vs Placebo</td>
<td>No selection</td>
<td>195 days vs 140 days</td>
<td>Improvement in PFS/OS Asian study</td>
</tr>
</tbody>
</table>

Emerging Therapies

Immunotherapy Approaches in GEJ Cancer

Immuno -therapy

Specific
- Cancer Vaccines
- FGFR
- EGFR
- Passive
- Checkpoint Inhibition
- PD1
- CTLA-4
- Non-specific
- Monoclonal antibodies
- Trastuzumab
- Ramucirumab
- ACT
- CTL
- TIL
- CART-T

Cancer Vaccines

Aim to prime and expand tumor-specific T cells by delivering tumor antigens to drive effective T cell activation.
Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

Cancer Vaccines

- Early phase studies of a DC vaccine combined with HER2 peptide in a small group of advance HER-2 positive patients and a pulsed DC MAGE3 peptide vaccine appeared to show modes effect.
- Further clinical development of DC-based vaccine approaches has been limited.

Adoptive Cell Therapy

In ACT, tumor-specific T cells are isolated from a patient, amplified and primed in vitro to tumor antigens or through genetic modification before being transfused into the patient.

Immune Checkpoint Inhibitors

Immune Checkpoints

CTLA-4 and PD-1/PD-L1

CTL-4 Directed Approaches

<table>
<thead>
<tr>
<th>Phase</th>
<th>Drug</th>
<th>No of pts</th>
<th>Line of Therapy</th>
<th>Outcome</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Tremelimumab (CTLA-4 antibody)</td>
<td>18</td>
<td>2nd/3rd line</td>
<td>ORR: 5%</td>
<td>TTP: 2.83 months</td>
</tr>
<tr>
<td>NCT01585987</td>
<td>Ipilimumab (CTLA-4 ab) vs best supportive care</td>
<td>114</td>
<td>Sequential after 1st line</td>
<td>PFS: 2.92 vs 4.89 (mos)</td>
<td>OS: 16.75 vs. 12.05 (mos)</td>
</tr>
<tr>
<td>P=0.0036</td>
<td>P=0.8433</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PD-1 Directed Approaches

<table>
<thead>
<tr>
<th>Phase</th>
<th>Drug</th>
<th>No of patients</th>
<th>Line of Therapy</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Pembrolizumab (PD-1 antibody)</td>
<td>39</td>
<td>PD-L1+</td>
<td>ORR 22%</td>
</tr>
<tr>
<td>I</td>
<td>Nivolumab (PD-L1 antibody)</td>
<td>16</td>
<td>Any line</td>
<td>ORR 25%</td>
</tr>
<tr>
<td>I/II</td>
<td>Checkmate 032</td>
<td>Nivolumab (PD-1 antibody)</td>
<td>59</td>
<td>>2 lines</td>
</tr>
<tr>
<td>I (Japan)</td>
<td>Avelumab</td>
<td>20</td>
<td>2nd/3rd line</td>
<td>ORR 15%</td>
</tr>
</tbody>
</table>
Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

Phase 3 Study of Nivolumab (Nivo) in Previously Treated Advanced Gastric or Gastroesophageal Junction (G/GEJ) Cancer

Updated results and subset analysis by PD-L1 expression (ATTRACTION-02)

Response by PDL-1 Expression

KEYNOTE-059 (Cohort 1): Survival

Response by PD-L1 Expression

KEYNOTE-059: Study Design

Open-label, Multicohort Phase II Study

- Primary endpoints: ORR, safety; secondary endpoints: DoR, PFS, OS
- Exploratory biomarker endpoints: efficacy by MSI, GEP

*HER2/neu positive allowed in cohort 1 if prior trastuzumab administered.

Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

Checkmate 032 Gastric Cohort

Best Reductions in Target Lesions

Key Points

• Immunotherapy including immune checkpoint inhibition is a growing area of research in gastric and esophageal cancers. Certain tumor characteristics may predict favorable responses to these approaches.

• Checkpoint inhibitor with anti-PD-1 mAb pembrolizumab and nivolumab has led to increased response rates in advanced heavily pre-treated patients

• Higher response rates in PDL-1 expression

• Combination approaches with chemotherapy, radiotherapy and targeted agents are likely to improve outcomes

• Clinical trials applying modern sequence technology that allows for identification of unique, tumor-specific neoantigen profiles are ongoing.

Side Effect and Management

5-Fluorouracil/Capecitabine Toxicity

• Toxicity similar to continuous infusion 5-Fluorouracil

• Common
 - Palmar-plantar erythrodysesthesia (Hand-foot syndrome)
 - Mucositis
 - Diarrhea
 - Photosensitivity

• Rare
 - Nausea/vomiting
 - Hyperbilirubinemia
 - Cardiac toxicity
 - Ocular toxicity

• Grade 2 stop drug until resolved or grade 1. Consider dose reduction.

Oxaliplatin Toxicity

• Two types of neuropathy
 - Acute neuropathy
 - Cold sensitivity for first 5 to 7 days after each dose
 - Chronic neuropathy
 - Dose limiting cumulative peripheral neuropathy

• Moderate emetogenic potential
• Myelosuppression
• Extravasation risk
• Delayed hypersensitivity
Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

Prevention and Management of Platinum Induced Nausea and Vomiting

Level 2: Patients receiving a moderately emetogenic agent or patients receiving mildly emetogenic agent who have failed to respond to or are intolerant of at least two level 1 regimens:

- Aprepitant 125 mg PO before chemotherapy on day 1, then 80 mg PO daily on days 2 and 3, and
- Palonosetron 0.25 mg IV before chemotherapy, and
- Dexamethasone 10-12 mg IV/PO before chemotherapy, then 8 mg PO daily on days 2-4

With or without

- Lorazepam 1 mg PO or IV before q4-6 hrs p.r.n., or
- Prochlorperazine 10 mg PO q4h-6 h p.r.n; or both

Irinotecan Toxicity

- Diarrhea
 - Early diarrhea
 - < 24 hours after irinotecan
 - Cholinergic type reaction
 - Anticholinergics (Atropine) can be beneficial
 - Atropine 0.25 -1 mg IV before irinotecan
 - Late diarrhea
 - > 24 hours after irinotecan
 - Prolonged diarrhea if not controlled
 - Aggressive loperamide can be beneficial

- Myelosuppression
- Moderate emetogenic potential
- Mucositis

Ramucirumab Adverse Effects

- GI perforation—permanently discontinue
- Thromboembolism
 - ATE—permanently discontinue
 - VTE
 - Continue with full dose anticoagulation with DVT or asymptomatic PE
 - Permanently discontinue if symptomatic PE
- CHF—permanently discontinue
- Delayed wound healing
 - Hold 4-8 weeks prior to and 4-8 weeks after surgery

Trastuzumab: Adverse Effects

- Infusion related reactions
 - Occur during or within 24 hours 21-40%
 - Can cause severe pulmonary toxicity (can be delayed)
 - Discontinue if life-threatening severe reactions
 - Cardiotoxicity: LVEF decreased (4-22%)
 - LVEF decreased and congestive heart failure
 - Use caution in patients with heart failure, cardiomyopathy, ventricular dysfunction
 - Recommended to undergo monitoring before and during therapy (MUGA or ECHO)
 - May require holding trastuzumab and CHF treatment

Side Effects vs Immune Related Adverse Events

- Immune related adverse event (irAE)
 - Type of side effect
 - Result of immune infiltration and inflammation
 - May be diagnosed with a biopsy of the affected anatomic location
 - May be a diagnosis of exclusion
 - Responsive to corticosteroids

Most common side effects of immunotherapy occur in 20-30% of patients

Immune related adverse events are generally uncommon

Side Effects: Immunotherapy

- Dermatological toxicities
 - Rash
 - Follicular dermatitis
 - Vitiligo
 - Bullous pemphigoid
- Endocrine Toxicities
 - Hypophysitis
 - Hypothyroidism
 - Hyperthyroidism
 - Thyroiditis
 - Adrenal Insufficiency
- Hepatic Toxicity
 - Hepatitis
 - Hepatomegaly
- Pneumonitis
 - Acute interstitial pneumonia
 - Diarrhea colitis

©2018 Rockpointe Oncology

Activity Slides
Integrating New Therapies into Treatment Regimens for Gastric and Gastroesophageal Cancer

Management of Immune-related Adverse Events Excluding Skin and Endocrine Toxicities

Conclusions

- Targeted therapies
 - Biomarkers needed to identify patients
 - Gene amplification > mutation in gastric cancer
 - Trastuzumab: HER2+ amplified gastroesophageal/gastric cancers, only a minority are eligible for HER2 targeting antibody therapy
 - Newer HER2 agents – Pertuzumab trial in the front line did not meet endpoint
 - Ramucirumab + paclitaxel: translated into survival benefit

- Negative trials in unselected patients:
 - EGFR agents + chemo
 - Panitumumab, Cetuximab + chemo detrimental
 - VEGF-A
 - Bevacizumab + chemo
 - cMET trials in selected population: highlight importance of biomarker use

Conclusions (cont)

- Heterogeneity of GC has led to differentiating those tumors that depend on an immune regulatory mechanism: EBV driven tumors and the MSI subtypes.
- Distinct biology subtypes will allow for application of more targeted therapies.
- Developing effective immunotherapy will require further knowledge of the complex relationship between tumor and environment.
- Immunologic checkpoint blockade with anti CTLA-4 and PD-1/PDL-1 have shown promising results. Further combination with immunotherapies might have synergistic effects.

CME/MOC Credit

- Requesting MOC and CME
 - If you are seeking MOC and CME credit, you do not need to complete the remainder of the paper form. Visit the website URL at the top of your evaluation form, or scan the QR code, then complete the online evaluation and pass the post-test for MOC credit. Please give your completed Activity Survey to on-site staff.

- Requesting only CME
 - If you are seeking only CME credit, the remaining information on the paper form must be completed. Please use a dark pen.
 - Return all forms to on-site CME staff.

Thank you for joining us today!